

BEST PRACTICE

When Should Testing Occur?

The traditional view of the development life cycle places testing prior to operation
and maintenance as illustrated in Table 5. All too often, testing after coding is the
only verification technique used to determine the adequacy of the system. When
testing is constrained to a single phase and confined to the later stages of
development, severe consequences can develop. It is not unusual to hear of
testing consuming 50 percent of the development budget. All errors are costly,
but the later in the life cycle that the error discovered is made, the more costly
the error. An error discovered in the latter parts of the life cycle must be paid for
four different times. The first cost is developing the program erroneously, which
may include writing the wrong specifications, coding the system wrong, and
documenting the system improperly. Second, the system must be tested to
detect the error. Third, the wrong specifications and coding must be removed and
the proper specifications, coding, and documentation added. Fourth, the system
must be retested to determine that it is now correct.

If lower cost and higher quality systems are the information services goals,
verification must not be isolated to a single phase in the development process,
but rather, incorporated into each phase of development. One of the most
prevalent and costly mistakes on systems development projects today is to defer
the activity of detecting and correcting problems until late in the project. A major
justification for an early verification activity is that many costly errors are made
before coding begins.

Studies have shown that the majority of system errors occur in the design phase.
These numerous studies show that approximately two-thirds of all detected

system errors can be attributed to errors made during the design phase. This
means that almost two-thirds of the errors must be specified and coded into
programs before they can be detected. The recommended testing process is
presented in Table 5 as a life cycle chart showing the verification activities for
each phase. The success of conducting verification throughout the development
cycle depends upon the existence of clearly defined and stated products at each
development stage. The more formal and precise the statement of the
development product, the more amenable it is to the analysis required to support
verification. Many of the new system development methodologies encourage firm
products even in the early development stages.

The recommended test process involves testing in every phase of the life cycle.
During the requirements phase, the emphasis is upon validation to determine
that the defined requirements meet the needs of the organization. During the
design and program phases, the emphasis is on verification to ensure that the
design and programs accomplish the defined requirements. During the test and
installation phases, the emphasis is on inspection to determine that the
implemented system meets the system specification. During the maintenance
phases, the system will be retested to determine that the changes work and that
the unchanged portion continues to work.

The following activities should be performed at each phase of the life cycle:

 Analyze the structures produced at this phase for internal testability and
adequacy.

 Generate test sets based on the structure at this phase.

In addition, the following should be performed during design and programming:

 Determine that the structures are consistent with structures produced
during previous phases.

 Refine or redefine test sets generated earlier.

Throughout the entire life cycle, neither development nor verification is a straight-
line activity. Modifications or corrections to a structure at one phase will require
modifications or reverification of structures produced during previous phases.

Requirements

The verification activities that accompany the problem definition and
requirements analysis phase of software development are extremely significant.
The adequacy of the requirements must be thoroughly analyzed and initial test
cases generated with the expected (correct) responses. Developing scenarios of

expected system use helps to determine the test data and anticipated results.
These tests form the core of the final test set. Generating these tests and the
expected behavior of the system clarifies the requirements and helps guarantee
that they are testable. Vague or requirements that are not testable leave the
validity of the delivered product in doubt. Late discovery of requirements
inadequacy can be very costly. A determination of the criticality of software
quality attributes and the importance of validation should be made at this stage.
Both product requirements and validation requirements should be established.

Design

Organization of the verification effort and test management activities should be
closely integrated with preliminary design. The general testing strategy –
including test methods and test evaluation criteria – is formulated, and a test plan
is produced. If the project size or criticality warrants, an independent test team is
organized. In addition, a test schedule with observable milestones is constructed.
At this same time, the framework for quality assurance and test documentation
should be established.
During detailed design, validation support tools should be acquired or developed
and the test procedures themselves should be produced. Test data to exercise
the functions introduced during the design process, as well as test cases based
upon the structure of the system, should be generated. Thus, as the software
development proceeds, a more effective set of test cases is built.

In addition to test organization and the generation of test cases, the design itself
should be analyzed and examined for errors. Simulation can be used to verify
properties of the system structures and subsystem interaction; the developers to
verify the flow and logical structure of the system, while the test team should
perform design inspections using design walkthroughs. Missing cases, faulty
logic, module interface mismatches, data structure inconsistencies, erroneous
I/O assumptions, and user interface inadequacies, are items of concern. The
detailed design must prove to be internally coherent, complete, and consistent
with the preliminary design and requirements.

Program (Build/Construction)

Actual testing occurs during the construction stage of development. Many testing
tools and techniques exist for this stage of system development. Code
walkthrough and code inspection are effective manual techniques. Static analysis
techniques detect errors by analyzing program characteristics such as data flow
and language construct usage. For programs of significant size, automated tools
are required to perform this analysis. Dynamic analysis, performed as the code
actually executes, is used to determine test coverage through various
instrumentation techniques. Formal verification or proof techniques are used to
provide further quality assurance.

Test Process

During the test process, careful control and management of test information is
critical. Test sets, test results, and test reports should be catalogued and stored
in a database. For all but very small systems, automated tools are required to do
an adequate job – the bookkeeping chores alone become too large to handle
manually. A test driver, test data generation aids, test coverage tools, test results
management aids, and report generators are usually required.

Installation

The process of placing tested programs into production is an important phase
normally executed within a narrow time span. Testing during this phase must
ensure that the correct versions of the program are placed into production; that
data if changed or added is correct; and that all involved parties know their new
duties and can perform them correctly.

Maintenance

Over 50% of the life cycle costs of a software system are spent on maintenance.
As the system is used, it is modified either to correct errors or to augment the
original system. After each modification the system must be retested. Such
retesting activity is termed regression testing. The goal of regression testing is to
minimize the cost of system revalidation. Usually only those portions of the
system impacted by the modifications are retested. However, changes at any
level may necessitate retesting, re-verifying and updating documentation at all
levels below it. For example, a design change requires design re-verification, unit
retesting and subsystem retesting.

Test cases generated during system development are reused or used after
appropriate modifications. The quality of the test documentation generated during
system development and modified during maintenance will affect the cost of
regression testing. If test data cases have been catalogued and preserved,
duplication of effort will be minimized.

References

Guide – CSTE Common Body Of Knowledge, V6.1

