

BEST PRACTICE

Validation Techniques

Validation assures that the end product (system) meets requirements and
expectations under defined operating conditions. Within an IT environment, the
end product is typically executable code. Validation ensures that the system
operates according to plan by executing the system functions through a series of
tests that can be observed and evaluated for compliance with expected results.

Table 7-4 illustrates how various techniques can be used throughout the
standard test stages. Each technique is described below.

White-Box

White-box testing (logic driven) assumes that the path of logic in a unit or
program is known. White-box testing consists of testing paths, branch by branch,
to produce predictable results. Multiple white-box testing techniques are listed
below. These techniques can be combined as appropriate for the application, but
should be limited, as too many techniques can lead to an unmanageable number
of test cases.

When evaluating the paybacks received from various test techniques, white-box
or program-based testing produces a higher defect yield than the other dynamic
techniques when planned and executed correctly.

Black-Box

In black-box testing (data or condition driven), the focus is on evaluating the
function of a program or application against its currently approved specifications.
Specifically, this technique determines whether combinations of inputs and
operations produce expected results. As a result, the initial conditions and input
data are critical for black-box test cases.

Three successful techniques for managing the amount of input data required
include:

Equivalence Partitioning

An equivalence class is a subset of data that represents a larger class.
Equivalence partitioning is a technique for testing equivalence classes rather
than undertaking exhaustive testing of each value of the larger class. For
example, a program which edits credit limits within a given range (at least
$10,000 but less than $15,000) would have three equivalence classes:

 Less than $10,000 (invalid)

 Equal to $10,000 but not as great as $15,000 (valid)

 $15,000 or greater (invalid)

Boundary Analysis

This technique consists of developing test cases and data that focus on the
input and output boundaries of a given function. In the credit limit example,
boundary analysis would test the:

 Low boundary plus or minus one ($9,999 and $10,001)

 Boundaries ($10,000 and $15,000)

 Upper boundary plus or minus one ($14,999 and $15,001)

Error Guessing

This is based on the theory that test cases can be developed from the
intuition and experience of the tester. For example, in a test where one of
the inputs is the date, a tester may try February 29, 2000 or February 29,
2001.

Incremental

Incremental testing is a disciplined method of testing the interfaces between unit-
tested programs and between system components. It involves adding unit-tested
programs to a given module or component one by one, and testing each
resultant combination. There are two types of incremental testing:

Top-Down

This method of testing begins testing from the top of the module hierarchy
and works down to the bottom using interim stubs to simulate lower
interfacing modules or programs. Modules are added in descending
hierarchical order.

Bottom-Up

This method of testing begins testing from the bottom of the hierarchy and
works up to the top. Modules are added in ascending hierarchical order.
Bottom-up testing requires the development of driver modules, which
provide the test input, call the module or program being tested, and
display test output.

There are pros and cons associated with each of these methods, although
bottom-up testing is generally considered easier to use. Drivers tend to be less
difficult to create than stubs, and can serve multiple purposes. Output from
bottom-up testing is also often easier to examine, as it always comes from the
module directly above the module under test.

Thread

This test technique, which is often used during early integration testing,
demonstrates key functional capabilities by testing a string of units that
accomplish a specific function in the application. Thread testing and incremental
testing are usually used together. For example, units can undergo incremental
testing until enough units are integrated and a single business function can be
performed, threading through the integrated components.

When testing client/server applications, these techniques are extremely critical.
An example of an effective strategy for a simple two-tier client/server application
could include:

1. Unit and bottom-up incrementally test the application server components.
2. Unit and incrementally test the GUI or client components.
3. Test the network.

4. Thread test a valid business transaction through the integrated client,
server, and network.

Regression
There are always risks associated with introducing change to an application. To
reduce this risk, regression testing should be conducted during all stages of
testing after a functional change, reduction, improvement, or repair has been
made. This technique assures that the change will not Regression testing can be
a very expensive undertaking, both in terms of time and money. The test
manager’s objective is to maximize the benefits of the regression test while
minimizing the time and effort required for executing the test.

The test manager must choose which type of regression test minimizes the
impact to the project schedule when changes are made, and still assures that no
new defects were introduced. The types of regression tests include:

Unit Regression Testing

This retests a single program or component after a change has been
made. At a minimum, the developer should always execute unit regression
testing when a change is made.

Regional Regression Testing

This retests modules connected to the program or component that have
been changed. If accurate system models or system documentation are
available, it is possible to use them to identify system components
adjacent to the changed components, and define the appropriate set of
test cases to be executed. A regional regression test executes a subset of
the full set of application test cases. This is a significant timesaving over
executing a full regression test, and still helps assure the project team and
users that no new defects were introduced.

Full Regression Testing

This retests the entire application after a change has been made. A full
regression test is usually executed when multiple changes have been
made to critical components of the application. This is the full set of test
cases defined for the application.

When an application feeds data to another application, called the
“downstream” application, a determination must be made whether
regression testing should be conducted with the integrated application.

Testers from both project teams cooperate to execute this integrated test,
which involves passing data from the changed application to the
downstream application, and then executing a set of test cases for the
receiving application to assure that it was not adversely affected by the
changes.

References

Guide – CSTE Common Body Of Knowledge, V6.1

