
Maximizing Test Case Efficiency 

  
August 2007 - Pragmatic Software Newsletters 

 
It seems we are busier today than ever.  With increasing workloads, it is important to 
maximize the time spent creating test cases.  A well thought out testing approach 
will pay dividends by reducing the time spent creating test cases and by improving 
the quality of your software releases.     

Develop Test Cases During the Requirements Phase

 

As requirements are developed, create your test cases once each requirement is at 
the approval stage. This has many benefits.  First, it forces the test team to scour 
the requirement and brings to light inadequate or inaccurate detail for the 
requirement.  Additionally, it ensures the requirement is fully testable.  Last, it 
allows the developers to review the test cases prior to coding.  This illuminates your 
test plan and developers will spend time testing each scenario before it enters QA, 
saving valuable re-work time.    

Implement Smart Requirement Numbering and Test Case Titles

 

Each requirement should be numbered in logical sequences and if there are multiple 
sections of the requirement, each section should be numbered separately.  For 
example, let's assume you were creating a newsletter system for ABC client.  Let's 
assume this is the first work you have done for ABC client.  Consider numbering the 
requirement as ABC-0001. If you later do more work for this client, name that 
requirement ABC-0002.  This allows you to quickly determine what client the 
requirement pertains to as well as how much work you have done for them.   Let's 
also assume the first requirement for the newsletter system is to provide an Opt-In 
newsletter signup screen, but it has several level of details for the requirement.  
Consider identifying each level of detail with sections within the requirement: 

ABC-0001.001 Newsletter Opt-In Screen  
ABC-0001.002 Send Opt-In Subscriber an Email Verifying Opt-In Profile  

By having several sections within the requirement and numbering them accordingly, 
it is easy to determine the distinct areas of the requirement. 

First Priority is Positive Test Cases

 

When creating test cases, focus on positive test cases first.  These are test cases 
that test the behavior of the requirement as it is designed.  For example, in the 
Newsletter example above, these test cases will ensure that you can opt-in to the 
newsletter system.  When creating test cases, include the section number in the title 
each test case.  This allows you quickly determine sets of test cases for each 
requirement (and each section with the requirement).  Below are some example 
positive test cases for the Newsletter example above: 

ABC-0001.001 Check Opt-in Screen format (Does the format of the screen 
match the requirement?)  
ABC-0001.001 Check Opt-in Tab Order (When tabbing between fields, does it 



 
go from top to bottom, left to right?)  
ABC-0001.001 Save Opt-In record with all required fields (this will ensure 
that you can opt-in to the newsletter system)  
ABC-0001.002 Check Subscriber Verification Email (did we receive an email 
upon opting-in?)  
ABC-0001.002 Check Subscriber Verification Email format (Is the email 
formatted per the requirement?)  

Notice how we included the requirement section in each test case title, providing 
quick traceability.  This makes it easier for project managers to ensure there is 
adequate test case coverage for each section of the requirement and allows 
programmers to quickly determine what area of the requirement is covered by the 
test case. 

Second Priority is Negative Test Cases

 

To ensure that the software works gracefully when users try things that were not 
intended, create a set of negative test cases.  These are test cases that test the 
requirement in ways the developer may not have thought of.  Below are some 
example negative test cases for the Newsletter example above: 

ABC-0001.001 Enter an invalid email address (It should ask them to re-enter a 
valid email address)  
ABC-0001.001 Leave the required fields blank (Last name, first name and 
email are required, should give a friendly error message if any of these are left 
blank)  
ABC-0001.001 Bounds testing for each field (Try entering 51 characters for 
the first and last name knowing that 50 characters is the maximum size 
allowed.  Try entering 256 characters for the email address to ensure it only 
allows 255 characters.)  
ABC-0001.001 Opt-in with an existing Opt-In account (Opt-in with your email 
address, then try to opt-in again after the opt-in is successful, it should tell you 
that your email address is already opted-in.)  

Other Test Cases

 

Once the positive and negative test cases are defined, consider adding additional test 
cases for: 

1. Performance - Performance test cases ensure that the code will not become 
unusable with large amounts of data. For example, import 50,000 items and 
record the timings.  Compare those timings to when you only have 50 items.  
For most applications, acceptable response time is anything under 5 seconds, 
while good response time is anything under 2 seconds.  This may vary depending 
on the application and your own performance guidelines.  The review should 
ensure that there are an adequate number of test cases for this.  

2. Security Testing - If the feature is a secured feature, there should be security 
test cases to ensure that the correct rights are granted before specific actions 
can occur.  The review should ensure that there are an adequate number of 
test cases for this.  

 



Pragmatic Agile Development (PAD) Overview - 
http://www.PragmaticSW.com/PADOverviewPresentation.pdf

  

PAD Road Map - http://www.PragmaticSW.com/Pragmatic/Templates/RoadMap_Template.pdf

  

PAD Best Practices Excerpt - http://www.PragmaticSW.com/PADBestPracticesExcerpt.pdf

  

Additional PAD Information - http://www.pragmaticsw.com/PADOverview.pdf   

Project Management Guidelines - 
http://www.PragmaticSW.com/Pragmatic/Templates/ProjectMgtGuidelines.rtf

  

Functional Specifications - http://www.PragmaticSW.com/Pragmatic/Templates/FunctionalSpec.rtf

  

Architectural Overview - http://www.PragmaticSW.com/Pragmatic/Templates/ArchitectureOverview.rtf

  

Detailed Design - http://www.PragmaticSW.com/Pragmatic/Templates/DetailedDesign.rtf

  

Strategic Planning Document - http://www.PragmaticSW.com/Pragmatic/Templates/StrategicPlanning.rtf

  

Test Design - http://www.PragmaticSW.com/Pragmatic/Templates/TestDesign.rtf

  

Risk Assessment - http://www.PragmaticSW.com/Pragmatic/Templates/Risk%20Assessment.rtf

  

Weekly Status - http://www.PragmaticSW.com/Pragmatic/Templates/WeeklyStatusRpt.rtf

  

User Acceptance Test Release Report - 
http://www.PragmaticSW.com/Pragmatic/Templates/UATRelease.rtf

  

Post Mortem Report - http://www.PragmaticSW.com/Pragmatic/Templates/PostMortem.rtf

  

All Templates - http://www.PragmaticSW.com/Templates.htm

  

Prior Newsletters - http://www.PragmaticSW.com/Newsletters.htm

  

Software Planner - http://www.SoftwarePlanner.com/SoftwarePlannerPro.asp

  

Defect Tracker - http://www.DefectTracker.com

  

Remoteus (Remote Desktop Sharing) - http://www.PragmaticSW.com/Remoteus.asp

  

About the Author 
Steve Miller is the President of Pragmatic Software (http://www.PragmaticSW.com).  
With over 21 years of experience, Steve has extensive knowledge in project 
management, software architecture and test design. Steve publishes a monthly 
newsletter for companies that design and develop software.  You can read other 
newsletters at http://www.PragmaticSW.com/Newsletters.asp.  Steve's email is 
steve.miller@PragmaticSW.com.  

3. Regression Testing - If the feature will become a base part of your product, 
identify specific test cases from this test suite that would be a good candidate 
for Regression Testing in future releases.  The review should ensure that there 
are an adequate number of test cases for this.  

 
Helpful Templates  

Below are some helpful templates to aid you in developing software solutions on-time 
and on-budget:

  

Pragmatic Software Co., Inc. 
383 Inverness Parkway 
Suite 280 
Englewood, CO 80112  

Phone: 303.768.7480 
Fax: 303.768.7481 
Web site: 
http://www.PragmaticSW.com

 

E-mail: info@PragmaticSW.com

   

http://www.PragmaticSW.com/PADOverviewPresentation.pdf
http://www.PragmaticSW.com/Pragmatic/Templates/RoadMap_Template.pdf
http://www.PragmaticSW.com/PADBestPracticesExcerpt.pdf
http://www.pragmaticsw.com/PADOverview.pdf
http://www.PragmaticSW.com/Pragmatic/Templates/ProjectMgtGuidelines.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/FunctionalSpec.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/ArchitectureOverview.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/DetailedDesign.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/StrategicPlanning.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/TestDesign.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/Risk%20Assessment.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/WeeklyStatusRpt.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/UATRelease.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/PostMortem.rtf
http://www.PragmaticSW.com/Templates.htm
http://www.PragmaticSW.com/Newsletters.htm
http://www.SoftwarePlanner.com/SoftwarePlannerPro.asp
http://www.DefectTracker.com
http://www.PragmaticSW.com/Remoteus.asp
http://www.PragmaticSW.com
http://www.PragmaticSW.com/Newsletters.asp
http://www.PragmaticSW.com


 


