
Software Testing:
A Profession of Paradoxes

Introduction

For many years now, testing professionals have struggled to define best practices,

methodologies, standards and qualification schemes for optimal software testing.

Much work has already been done in this area, and continues today. But will it ever

be possible to fully explore and grasp all aspects of software testing?

It’s certainly not an easy task, for this highly-regulated profession seems to harbor

some remarkable irregularities that are embedded in its very nature. Paradoxes and

‘catch-22s’ abound throughout the various domains of software testing, including

test execution, usability testing, test report data, test team, test automation, and

developer testing.

This paper aims to create awareness of a number of testing paradoxes that challenge

us all. Some are well-known while others are more obscure—but all are worth

investigating. The paper also considers a few critical questions for software testers.

How do we cope with situations that defy our intuition? Do we take them for

granted, or is there a solution at hand? How can we can learn from them, anticipate

them, and use them to get better at what we do?

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

BY ZEGER VAN HESE

TESTING CONSULTANT,
CTG BELGIUM

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

© Computer Task Group, Inc. 2007

All rights reserved. No part of this publication may be reproduced or transmitted
in any form or by any means, electronic or mechanical, including photography,

recording, or any information storage and retrieval system, without permission in
writing from CTG.

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

3

Some Definitions

Catch-22

The term ‘catch-22’ was first used in the Joseph Heller novel Catch-22 to describe a
paradox in a law, regulation, or practice where one is a victim regardless of the
choice he makes. In the novel, a U.S. Air Force pilot who wants to be excused from
combat flight duty is required to supply an official medical diagnosis that he is unfit
for duty because he is insane. However—and here’s the catch-22—since no sane
person would want to fly dangerous combat missions, the pilot, by attempting to
avoid them, demonstrates that he is in fact sane, and therefore fit to fly.

Over time, ‘catch-22’ has acquired a more universal meaning. Today, we define it as
a ‘no-win’ dilemma where the only solution is to follow a rule that is blocked by
another rule, or a paradoxical situation where you cannot obtain A without B, but B
first requires A (this is also known as the ‘chicken/egg problem’). A classic example
of a catch-22 occurs in the context of searching for a job. In moving from school to
a career, job seekers often find they are unable to find a position without work
experience—experience that can only be attained on the job.

Paradox

A ‘paradox’ is an apparently true statement or group of statements that leads to a
contradiction or a situation that defies intuition. Paradoxes are frequently utilized to
arrest attention and provoke fresh thought. The word ‘paradox’ is often used inter-
changeably (and wrongly) with contradiction; but whereas a contradiction asserts its
own opposite, many paradoxes do allow for resolution of some kind, with the
contradiction often disappearing when you look at the problem from a different
perspective.

The most famous paradox is probably Zeno’s paradox, involving a race between the
Greek hero Achilles and a tortoise. The tortoise gets a head start, and apparently
Achilles can never surpass it, since whenever Achilles runs to where the tortoise has
been, the tortoise has moved further ahead. While Achilles makes up that gap, the
tortoise creates a new one, and so on. As long as Achilles’ forward progress is
defined in terms of the turtle’s progress, the paradox holds, but as soon as we look at
it from a different perspective—one that views Achilles and the tortoise both pro-
gressing toward the finish line—the paradox disappears.1

Paradoxes exist in most scientific domains: logical, mathematical, philosophical,
and physical, and examination of the ambiguities, equivocations, and unstated
assumptions that underlie them has led to significant advances in science,
philosophy, and mathematics. 2

The word ‘paradox’ is

often used interchange-

ably (and wrongly) with

contradiction; but

whereas a contradiction

asserts its own opposite,

many paradoxes do allow

for resolution of some

kind, with the

contradiction often

disappearing when you

look at the problem from a

different perspective.

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

4

Equivocation

An ‘equivocation’ is the misleading use of a word with more than one meaning by
glossing over which meaning is intended at a particular time. Using an equivocation,
we could ‘prove’ that a ham sandwich is better than happiness3 as follows:

Which is better, eternal happiness or a ham sandwich?
It would appear that eternal happiness is better, but think again!
After all, nothing is better than eternal happiness,
and a ham sandwich is certainly better than nothing.
Therefore a ham sandwich is better than eternal happiness.

—RAYMOND SMULLYAN

The Catch-22 of Testing

The complexity of software in general is the main cause of the catch-22 of software
testing: testing is potentially endless. Even a program of moderate complexity can
never be completely tested, since it is impossible to test until all the defects are
unearthed and removed. As a result, software that is a hundred percent bug-free,
even though thoroughly tested, does not exist.

Testing is merely stopped; it can never truly be finished. Yet, at some point, we have
to end testing and ship the software. The question is, when? This is one of the most
difficult issues to resolve in the field of software testing. On one hand, marketing a
program with annoying faults undercuts your reputation and credibility. On the other
hand, if you never start selling your product, you will soon go out of business!4

One rule of thumb is that testing should continue as long as bugs are being found
fairly regularly. Other indicators that can help determine when to stop include:

• Deadlines (e.g., release or test deadlines) are reached.
• Test cases are completed with a certain percentage passed.
• Coverage of code, functionality, or requirements reaches a specified point.
• The bug rate falls below a certain level.
• The test budget has been depleted.
• The risk associated with the project is below an acceptable limit.

Realistically, testing is a tradeoff among priorities—budget, time, and quality—that
is driven by profit models. The pragmatic, and unfortunately most common,
approach is to stop testing whenever some or any of the allocated resources (time,
budget, or test cases) are exhausted. The optimal ‘stopping rule’ is to end testing
either when reliability meets the requirement, or when the benefit to be derived from
continuing testing cannot justify the testing cost.5

Testing is merely stopped;

it can never truly

be finished. Yet, at some

point, we have to end

testing and ship the

software. The question is,

when?

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

5

Paradoxes in Software Testing

Testing Realities

Some particular situations illustrate what I’ll call ‘realities’ of software testing.
They’re not really paradoxes, but rather axioms, truisms, or even aphorisms about
the nature of software testing itself, although some are indeed paradoxical in nature.
It is interesting to take a closer look at these realities, because each one of them
offers a bit of knowledge that can help to put some aspects of the overall software
testing process into perspective.

Who watches the watchmen?
The first testing truism questions the role of the testers as gatekeepers of quality: who
watches the watchmen? As Sara Ford states: “I was most surprised the day I realized
the paradox of—how am I going to write tests for the tests that I’m writing?” 6

One of the trickiest axioms within testing is that everyone relies on testers to find oth-
ers’ errors, while tending to forget that testers may be wrong themselves. Humans err,
and testers are human. This means they overlook problems or misunderstand outputs.
Some of the problems they find turn out not to be problems at all. Moreover, human
memory is imperfect, so testers who rely too heavily on memory are bound to make
mistakes. For that reason, it’s important to take notes during testing: log what you did
and what the system did. Notes are always more trustworthy than memory!7

Another phenomenon is ‘inattentional blindness’, where an observer whose mind is
otherwise occupied may fail to see things in plain view. When presented with the same
scenario a second time, the observer may detect ‘new’ things and assume they weren’t
there before. Inattentional blindness means that unless we pay close attention, we can
miss even the most conspicuous events that occur while we’re executing our well-
planned tests. This in turn suggests that perhaps our tests are not as powerful as we
think.8

Joel Spolsky provides a good example of this principle:

All the testing we did, meticulously pulling down every menu
and seeing if it worked right, didn’t uncover the showstoppers that
made it impossible to do what the product was intended to allow.
Trying to use the product, as a customer would, found these show-
stoppers in a minute. 9

In 2005, Matthew Heusser identified some other classic testing mistakes: 10

Test management mistakes:
• Dehumanizing the test process by relying too heavily on spreadsheets or

MS project plans and disregarding the individual (also known as ‘manage-
ment by spreadsheet/MS Project’)

The first testing truism

questions the role of the

testers as gatekeepers of

quality: who watches the

watchmen?

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

6

• Assuming that only testers are responsible for quality; blaming individual
testers for letting bugs slip through

• Evaluating testers by bugs found, possibly resulting in a testing focus on
trivial and easy-to-find bugs

Test automation mistakes:
• Adding test automation when testing is late, disregarding the fact that

somebody has to learn the tool and record the scripts
• Assuming that the software is bug-free just because nothing was found dur-

ing an automated test run
• Assuming that hiring test tool skills is sufficient; failing to realize that test

tool skills can be taught, but talent cannot

Test strategy mistakes:
• Including insufficient diversity in the test strategy (only requirements-

based testing, for example), and as a consequence, missing entire
classifications of defects

• Relying too much on scripted testing; not thinking enough as an end-user
of the product (as mentioned earlier, inattentional blindness may cause us
to overlook even the most apparent problems)

• Using untrained exploratory testers, which fails to recognize that explor-
atory testing is a discipline in its own right (not every tester is a good
exploratory tester by nature: it requires specific skills)

• Placing too much emphasis on documentation (time spent documenting is
time not spent testing)

Testing can’t show that bugs don’t exist
If testing fails to find bugs, no matter how hard we try, does this mean that the soft-
ware was cleanly written and that there are indeed few if any bugs to be found? Not
necessarily. It is an inherent quality of software testing that it can show that bugs
exist, but not that bugs don’t exist. You can perform your tests and find and report
bugs, but you can never guarantee that there are no more bugs to find. You can only
continue your testing and possibly find more.

Ron Patton (2000) compares this situation to an exterminator charged with examin-
ing a house for bugs. He inspects one house and finds evidence of bugs—live bugs,
dead bugs, or nests. He can safely say that the house has bugs. He then visits another
house, where he finds no apparent evidence of bugs. He looks in all the obvious
places and sees no signs of infestation. Can he absolutely, positively state that the
house is bug-free? No. All he can conclude is that his search failed to detect any live
bugs. Unless he completely tears the house down, he can’t be sure that he didn’t
simply miss them.11

It is an inherent quality

of software testing that it

can show that bugs exist,

but not that bugs don’t

exist.

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

7

The very act of testing influences its outcome
This axiom is also often referred to as the ‘observer effect’. The idea is that since
any form of observation is also an interaction, the act of testing itself can also affect
that which is being tested. For example:

• When log files are used in testing to record progress or events, the
application under test may slow down drastically.

• The act of viewing log files while a piece of software is running can cause
an I/O error, which may cause it to stop.

• Observing the performance of a CPU by running both the observed and
observing programs on the same machine will lead to inaccurate results
because the observer program itself affects the CPU performance.

• Observing (debugging) a running program by modifying its source code
(e.g., adding extra output or generating log files) or by running it in a
debugger may cause certain bugs to diminish or change their behavior,
creating extra difficulty for the person trying to isolate the bug (also known
as a ‘Heisenbug’)

Paradoxically, software testing is not always considered as the best way toward bet-
ter quality. As Boris Beizer asserts in his complexity barrier principle12, chances are
that testing and fixing problems may not necessarily improve the quality and
reliability of the software. Sometimes fixing a problem may introduce much more
severe problems into the system.

Failure breeds success
It may be a cliche to say that we learn more from our mistakes than from our suc-
cesses, but now there is scientific proof. Psychologists from the University of Exeter
have actually identified an early warning signal in the brain that helps prevent the
repetition of previous mistakes. Published in the Journal of Cognitive Neuroscience,
their research identifies, for the first time, a mechanism in the brain that reacts—in
just 0.1 seconds—to stimuli that have led to errors in the past. By monitoring
activity in the brain as it occurs, the researchers were able to identify the moment at
which this mechanism kicks in.13

Nobody likes to make mistakes and everyone fears failure to some degree, but in
retrospect, most breakthroughs depend on it. Even the most successful companies
have embraced their mistakes and learned from them. The truism ‘failure breeds
success’ also applies to software testing. Here are some ways that failure can, in fact,
be more beneficial for us than success:

• Failure encourages lateral thinking. It encourages us to look for other
solutions that we might not have thought of had things been easier.

• Making mistakes makes us more experienced. As we err and learn from our
mistakes, we tend to become more aware of what needs to be done in order
to achieve our objectives.

• Mistakes build character by making us more thick-skinned: an extra asset
for a tester, who needs to cultivate a critical attitude.

Nobody likes to make

mistakes and everyone

fears failure to some

degree, but in retrospect,

most breakthroughs

depend on it.

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

8

• Failure forces you to be honest with yourself. If you keep getting disap-
pointing results, maybe you’ll eventually decide that testing is not your
profession. If not, you’ll know what you want even more clearly.

• Too much success too soon can lead to a false sense of confidence. The
risk is that we become comfortable and lazy, losing our ability to self-
critique our performance and thus some core testing qualities.

• Failure encourages improvement and planning. If the same mistakes keep
reappearing, it’s time to sit down and re-analyze your approach. Failing can
be a way of finding out that the methods you used probably weren’t the right
ones. After reorganizing and planning, you should be better off than before.

The biggest bugs are the hardest to find
Once in a while we stumble on defects that are very hard to reproduce. These issues
are called ‘intermittent bugs’. An intermittent bug is the mysterious and undesirable
behavior of a system, observed at least once, that we cannot yet manifest on
demand.14 The situation becomes even more difficult if these problems introduce
system crashes. Upon restarting the system, any corrupted data in the memory may
be deleted, thus destroying the evidence. In many cases, intermittent bugs are the
result of long-term corruption of some resource or memory.

Good examples of this are memory leaks. Some function in the program does not
return unused memory when finishing. Because there is a lot of available memory,
this can go on for a long time, until the memory is depleted. The problem becomes
even more complicated if this does not happen every time, but only in very special
situations. If intermittent bugs occur, it’s a good idea to rerun the same sequence of
test cases, maybe even with the same timing, and do more checking than before.15

While intermittent bugs can mean serious trouble, they also provide an opportunity
for us to do our best. The ability and confidence to investigate an intermittent bug
are qualities that mark an excellent tester. The challenge is to transform the intermit-
tent bug into a ‘regular’ bug by resolving the mystery surrounding it.

The more bugs you find, the more bugs there are
Many observers have pointed out the similarities between real bugs and software
bugs. Both types are social creatures that tend to stick together. Bugs follow bugs: if
you encounter a defect, chances are that there will be more nearby. Frequently, a
tester will go for long spells without finding a bug. Then, he’ll find one bug, then
quickly another, and then another. This is not surprising, and in fact, there are
several reasons why this is so (Ron Patton):

• Programmers have bad days. Code written one day may be perfect; code
written another may be sloppy. One bug can be a tell-tale sign that there
are more nearby.

• Programmers have habits. A programmer who is prone to a certain error
will often repeat it.

• Some bugs are really just the tip of the iceberg. Very often, the software’s
design or architecture has a fundamental problem. A tester may find several
bugs that at first seem unrelated, but eventually are discovered to have one
primary, serious cause.

Many observers have

pointed out the

similarities between real

bugs and software bugs.

Both types are social

creatures that tend to

stick together. Bugs follow

bugs: if you encounter a

defect, chances are that

there will be more nearby.

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

9

The Pesticide Paradox

Every method you use to prevent or find bugs leaves a residue of
subtler bugs against which those methods are ineffectual.16

—BORIS BEIZER

In 1990, Boris Beizer described the ‘pesticide paradox’ phenomenon: the more you
test software, the more immune it becomes to your tests. He asserted that software
undergoing the same repetitive tests eventually builds up resistance to them, similar
to the reaction of insects to pesticides: if you keep applying the same pesticide, the
insects eventually build up resistance and the pesticide no longer works.

When we have a test that removes one or more errors, running that same test over
and over again will not eliminate errors that were previously removed, so the test
becomes ineffective. Related to this, errors that remain get harder to detect. After
several iterations, all the bugs that those tests would find have been exposed.
Continuing to run them won’t reveal anything new.

Highly repeatable testing can actually minimize the chance of
discovering all the important problems, for the same reason that
stepping in someone else’s footprints minimizes the chance of being
blown up by a land mine. 17

—JAMES BACH

The phenomenon of product code becoming more resistant to the test code, resulting
in fewer bugs being found over time, is also a major drawback of traditional auto-
mated testing. When you design an automated test (equivalent to manually running a
test case for the first time), you’ll either find a bug in the functionality being tested,
or the functionality will work as expected. Most likely, if you do not find a bug at
this point, your tests will not find another bug in their lifetimes.

Tests of this kind do serve one important purpose, however: that of regression test-
ing—that is, the testing of new code for side effects that break existing functionality.
Regression testing is even more important—if not essential—when testing in agile
development environments, where continuous automated regression is a must.

To overcome the pesticide paradox, software testers must be willing to continually
design new test cases that cover all or most of the scenarios where bugs might be
present. They might also adopt a methodology that allows them to reuse the test
code to automatically test new scenarios and code paths (better known as model-
based testing). In model-based testing, a machine creates and runs the new test cases
and validates behavior of the system, with elimination of all manual intervention.18

When we have a test that

removes one or more

errors, running that same

test over and over again

will not eliminate errors

that were previously

removed, so the test

becomes ineffective.

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

10

Mathematical Paradoxes

This section illustrates two interesting cases that can occur when performing soft-
ware testing. They’re fundamentally mathematical in nature, but they can be a useful
addition to our standard troubleshooting toolbox.19

Simpson’s Paradox (or a possible test reporting paradox)
‘Simpson’s Paradox’ is a situation in which two or more sets of data lead to one con-
clusion when evaluated individually, but lead to an opposite conclusion when the sets
are combined. In software testing, this is a situation that can occur when software
system B is worse in every area of comparison than software system A (Figure 1),
yet a combined test report indicates that system B is the better system (Figure 2).

The moral is that when reviewing test result data, you should first question whether
the data is aggregated from other sources. If it is, you need to look at the original
uncombined data. Additionally, when generating a test result data report, be very
careful about combining the data in an attempt to simplify your presentation. When
people say that “statistics can be made to say whatever you want,” this is exactly the
sort of situation they’re referring to.

Simpson’s Paradox occurs quite frequently, and can lead to erroneous test conclu-
sions that can, in turn, prompt the wrong business decisions. The paradox can easily
sneak by us, especially if we are presented with summary data only, and don’t get a
chance to see the original, uncombined data.

Figure 1 Comparing System A and System B

75%85%% tests passed

400100Total number of tests

30085Number of tests passed

System BSystem AAutomated Regression Tests

15%25%% tests passed

100200 Total number of tests

1550Number of tests passed

System BSystem AManual Tests

Figure 2 Combined Data for Manual and Automated Regression Tests

63%45% Score

500300Total number of tests

315135Number of tests passed

System BSystem ACombined Data

‘Simpson’s Paradox’ is a

situation in which two or

more sets of data lead to

one conclusion when

evaluated individually,

but lead to an opposite

conclusion when the sets

are combined.

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

11

Braess’s Paradox
Consider these two facts:

• When 42nd street was closed in New York City, instead of the predicted
traffic gridlock, traffic flow actually improved.

• When a new road was constructed in Stuttgart, Germany, traffic flow
worsened, and only improved after the road was torn up.

These paradoxical phenomena are two real-world examples of the Braess paradox,
named after Dietrich Braess who, in 1968, noted that adding extra capacity to a net-
work where the moving entities selfishly choose their route can in some cases reduce
overall performance. Braess’s Paradox has been investigated heavily by researchers.
Because of its obvious relation to data packets traveling on a network system, we
can informally rephrase the paradox as: “It is sometimes possible to increase net-
work congestion by increasing the number of routes between nodes”.

From a software testing point of view, Braess’s Paradox can arise when running net-
work performance tests. Adding a perfectly good, load-balancing server can actually
reduce network performance in a most surprising way. While the chances of encoun-
tering Braess’s Paradox are very slim, the phenomenon does exist. The moral is that
you should not assume that adding capacity to a network will necessarily improve
performance. If you add capacity and do not see the performance improvement you
were expecting, Braess’s Paradox is one of the things to investigate.

Test Team Paradox

In 2006, William Echlin warned of the danger that affects every test team: good
software testers need to be continually critical of other people’s work, but this
attitude of continuous criticism can affect other aspects of our work. A tester has to
look for all the negative aspects of the software. The problem for many testers is
that this pessimistic, critical attitude can easily come to extend beyond the software
they are testing.

This is where the paradox lies. If your test team is positive and happy, you may have
the wrong people for the job. A successful team needs to be critical; judgmental;
even negative. But a successful team should also try not to jeopardize relations with
other teams and within the team itself. The key for success as a team is to maintain a
critical focus while having a positive outlook. These actions can help to achieve that
goal:

• Highlight the good points within your team or project. It’s easy to maintain
a critical attitude, but it shouldn’t be too hard to come up with positive
comments about the team, the project, or the test process.

• Set realistic, clear, and achievable goals for both the team and yourself.
Testing sometimes seems to go on forever (see ‘the catch-22 of testing’
above), and a team that feels there’s no end in sight is likely to end up
despondent.

Adding a perfectly good,

load-balancing server can

actually reduce network

performance in a most

surprising way.

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

12

• Encourage developers to be positive about the testers’ efforts. Developers
can really help to maintain a tester’s enthusiasm. This is also in their best
interest, since it’s likely to result in the detection of more defects before a
product is released.

• Look for positives in the software. The test process encourages a negative
mindset. But instead of focusing on the negatives, why not emphasize the
positives? Bring some good news, for a change.

• Try to deliver bad news in a positive way. If you are given the chance, why
not slip in some humor? Not long ago, we even got developers on the team
enthusiastic about submitted bugs. How? We closed each bug description
with a funny quote or tag line. Eventually the developers returned the favor
by adding their own aphorisms and haikus to their resolution notes.

• Try to find bugs early. It’s much less of an impact and much more
appreciated if you find a serious bug three months before, rather than one
day before a product’s scheduled release.

• Temper your enthusiasm. It’s okay to be enthusiastic about finding a major
flaw in the system, but try to be diplomatic too.

Test Automation Paradoxes

In 2003, Brett Pettichord identified paradoxes that lie implied in the nature of test
automation.20 They include:

Bugs in automated tests
Everyone involved in test automation knows that tests do not write themselves. Test
automation is software development, which makes it subject to the same problems as
any other kind of programming activity. Test software should give us confidence in
the production software, but what happens when our automated tests contain bugs
themselves? It all comes down to the testing truism described earlier: “Who watches
the watchmen?” or in this case “Who tests the automated tests?” Is our confidence in
automated tests justified? Only if we have tests for our tests, which in turn should
have tests… and so on. But where do we draw the line on testing tests?

Two major types of test suite failures can occur: false positives (false alarms) and
false negatives (silent horrors). False alarms occur when a test is reported as failing
because of errors in the test, test libraries, or test environment configuration. Silent
horrors occur when an error is detected but not reported, or when a test is run
incorrectly. Here are a few possible ways to mitigate the effects of the first
automation paradox and avoid ‘silent horrors’ and ‘false alarms’:

• Make your test suites easy to review (clean syntax, common language).
• Verify that your automated tests also find already-known bugs.
• Use a different status for tests that can’t start (‘not run’).
• Fix false alarms when they occur (don’t let silent horrors slip in).
• If you don’t have time, log the problem.

Everyone involved in test

automation knows that

tests do not write

themselves. Test

automation is software

development, which

makes it subject to the

same problems as any

other kind of

programming activity.

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

13

Automated regression tests
When software changes frequently, there is a need for frequent retesting; new func-
tionalities may introduce bugs in parts of the application that were working before.
Therefore, regression tests are best automated. But the tricky part is, these software
changes can also break the automated regression tests.

This is the second test automation paradox: the more the software changes, the more
important regression tests become, but the greater the chance that our regression
tests will be broken. In other words: our regression tests are least reliable when we
need them most.

Developer Testing Paradox

The major cause of most software project failures and of poor software quality in
general is the lack of early-stage unit testing. Almost every project post-mortem
meeting—even those for successful projects—concludes that testing earlier in the
process would have made a huge difference. Unit testing is, by far, the best option
for improving software quality. The later a bug is found, the higher the cost of fixing
it, so it is only sound economics to identify and fix bugs as early as possible. Unit
testing is an opportunity to catch bugs early, before the cost of correction escalates
too far.21 (see Figure 3 below).

Figure 3: Boehm’s cost of change curve

The benefits of unit testing are clear, and the alarming number of software project
disasters and near-disasters should be enough motivation for investing in developer
testing and implementing a body of unit tests in parallel with the code. Today,
however, only a very small percentage of software organizations actually have a
consistent developer testing policy.

requirem
ent gathering

analysis and design

developm
ent

testing

deploym
ent

Cost of
change

Time

The major cause of most

software project failures

and of poor software

quality in general is the

lack of early-stage unit

testing.

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

14

This discrepancy is the basis of the developer testing paradox, as defined by Alberto
Savoia (2005).22 How is it possible that the practice of developer testing, which is so
obviously right and so widely acknowledged as beneficial, and which could improve
software quality and economics more than any other alternative, is still a rarity in
software development organizations?

One possible reason is because many heartfelt unit-testing efforts start with great
enthusiasm, but end up stalling and are eventually abandoned. This is why regular,
ongoing developer testing practices are the exception rather than the rule, and why
there is a developer testing paradox in the first place.

Another explanation for the paradox is that several common misconceptions
surround unit testing:23

• ‘It is too time-consuming.’ (You can either spend short minutes writing unit
tests, or spend long hours debugging. Properly planned unit testing is
actually a much more efficient use of time.)

• ‘It only proves that the code does what the code does.’ (The code should be
tested against its specification, not against itself.)

• ‘I don’t need unit tests; my software will work straight away.’ (Not only
are testers human; developers are too. Everyone makes mistakes.)

• ‘Integration tests will catch the bugs anyway.’ (The earlier bugs are found,
the better. Furthermore, testing won’t be as thorough as it should be.)

Usability Paradox/Catch-22

The purpose of a usability test is to verify whether your software works as intend-
ed, ensuring users have a satisfying experience. It is a means for measuring how
well people can use something (a computer program; a website) for its intended
purpose. Usability testing is one of the most important parts of a system’s develop-
ment life cycle, but it is often the most overlooked because of time/budgetary
issues. Investing in usability testing can be expensive, and should be thoughtfully
planned to make optimal use of your always-scarce resources. But what’s the
optimal timing of your usability effort?

You want to plan your usability sessions early enough so that they can tell you if
you’re heading down the wrong direction before you’re too far along. This way,
changes can be made when they’re least expensive. It’s much easier to change a
whiteboard drawing than a wireframe diagram; easier to change a wireframe dia-
gram than a prototype; and easier to change a prototype than a finished product.

However, if usability sessions take place too early, the information you get may be
made partially irrelevant because the product changes direction or conception for
whatever reason. As the ‘cone of uncertainty’ in figure 4 on the next page shows, we
know less at the beginning of a project than we do at the end. At this early stage,
users can’t yet interact with a finished product, so the comments and feedback
received from them are potentially less relevant.

How is it possible that the

practice of developer

testing, which is so

obviously right and so

widely acknowledged as

beneficial, and which

could improve software

quality and economics

more than any other

alternative, is still a rarity

in software development

organizations?

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

15

Figure 4. The cone of uncertainty (source: Microsoft.com)

Since usability involves users actually ‘using’ the software, it could be argued that
the best time for usability testing is right at the end, with software that is almost
complete. Unfortunately, at the end you can’t afford to make big changes. That’s
exactly what happened some years ago on a test project I did. A huge amount of
money was spent on design and layout studies for the software program. Testing was
almost completed when we obtained the results of a usability test that was organized
externally. A fair amount of users thought the application looked “horrible”. That’s
not something you want to hear two weeks before a release!

This is the usability paradox: You need to conduct usability testing in an early
stage, but at that point, there’s still no working software. At a later stage, when you
do have the software, you don’t have the time or the money to make changes if
anything serious emerges from the testing. Either way you lose. Catch-22. Or is
there a way out?

The answer is probably software prototyping: that is, the process of creating an
incomplete model of the future full-featured software program that can be used to
give users a first idea of the completed program or allow clients to evaluate it. Also
commonly used are screen generating programs that can emulate systems that don’t
function, but do show what the screens may look like. The main advantage of proto-
typing is that feedback from the users is obtained early in the project. The success of
this method relies heavily on the quality of the prototype. It’s also important to keep
in mind that prototyping is most beneficial in systems that will have many interac-
tions with the users. The greater the interaction between the computer and the user,
the greater the benefit that can be obtained from building a quick prototype system
and letting the user play with it.

Initial
Solution
Concept

Project
Schedule

1.6x

1.25x

1.5x

1.0x

0.85x

0.8x

0.6x

0.9x

1.25x

4x

2x

1.5x

1.0x

0.67x

0.5x

0.25x

0.8x

1.25x

Requirements
Analysis
Complete

Vision/
Scope

Approved

Project Plan
Approved

Release
Readiness

Project Cost
(effort and

size)

This is the usability

paradox: You need to

conduct usability testing

in an early stage, but at

that point, there’s still no

working software. At a

later stage, when you do

have the software, you

don’t have the time or the

money to make changes if

anything serious emerges

from the testing. Either

way you lose. Catch-22.

Or is there a way out?

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

16

Conclusion

All the situations described in the previous chapters are somewhat contradictory and
puzzling. Our ever-critical attitude is indeed a possible threat (test team paradox),
and bugs in automated tests do occur (test automation paradox). The pesticide para-
dox, the catch-22 of testing, and the ‘realities’ are real. Simpson’s paradox can
distort our testing reports. But there’s no need to let all this overwhelm us.

How wonderful that we have met with a paradox. Now we have
some hope of making progress.

—NIELS BOHR

This quote of the Danish Nobel prize-winner Niels Bohr captures the essence of
paradoxes: they force us to question our basic assumptions and find a different con-
text in which the contradictory ideas make sense. And in the process, we do some
thinking. Indeed, the very act of ‘seeing’ the paradox—the ability to entertain two
contradictory ideas at the same time—lies at the heart of creative thinking.

The purpose of paradoxes is to arrest attention and to provoke fresh thought. In
science, this process frequently leads to major breakthroughs. While I don’t claim
that the testing paradoxes and catch-22s described above will lead to major break-
throughs within testing, I would argue that becoming aware of them leads us to think
about the matter—and thinking may lead to creative rethinking. Maybe we can
expand our focus to look at options or possibilities that we normally wouldn’t con-
sider. Maybe that process will turn a potentially negative outcome into something
positive.

Or—maybe we should just view these phenomena as little particles of knowledge
that can help us put some aspects of the overall software testing process into clearer
perspective. As Sir Francis Bacon said centuries ago: “Knowledge is power.” It gives
us the power to beat the odds, to get a better understanding of our profession and—
hopefully—to become better at what we do.

Paradoxes force us to

question our basic

assumptions and find a

different context in which

the contradictory ideas

make sense. And in the

process, we do some

thinking. Indeed, the very

act of ‘seeing’ the

paradox—the ability to

entertain two

contradictory ideas at

the same time—lies at

the heart of creative

thinking.

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

17

References

• Wikipedia on paradoxes (http://www.wikipedia.org)
• Raymond Smullyan, “What is the Name of This Book?”, 1978
• Lee Thomas, “Quality versus speed: Paradox lost?”, IBM developerworks,

2003
• Ingo Melzer, Testing of a Computer Program on the Example of a Medical

Application with diversification and other Methods, 1996
• Yang, M.C.K.; Chao, A. “Reliability-estimation and stopping-rules for soft-

ware testing, based on repeated appearances of bugs”; IEEE Transactions
on Reliability, vol.44, no.2, p. 315-21, 1995

• Boris Beizer, Software Testing Techniques, Second Edition, 1990
• Ron Patton, Testing Axioms, 2000
• Nihit Kaul, weblog, 2004
• James Bach, “Test Automation Snake Oil”, Windows Tech Journal, October

1996
• Michael Hunter, “Five questions with Sara Ford”, Thoughts from a Braidy

Tester, 2007
• Hans Schaefer, “What a tester should know, even after midnight”, 2006
• Jiantao Pan, Software Testing, 1999

(http://www.ece.cmu.edu/~koopman/des_s99/sw_testing/)
• Scientist Live, Failure breeds success, 2007 (University of Exeter)
• Darren Roberts, “Ten excellent ways how failure can be more beneficial to

you than success”, 1998
• Matthew Heusser, “Classic mistakes in testing: revisited”, 2005
• James Bach’s blog, “How to investigate intermittent problems”, 2005
• Joel Spolsky, “What is the work of dogs in this country?”,

JoelOnSoftware.com, 2001
• Mike Kelly, “Four classic problems with scripted testing”, 2006
• James McCaffrey, “Software Testing paradoxes”, December 2005
• D. Braess, “On a paradox of traffic planning”, The Journal of

Transportation Science, volume 39, 2005, pp. 446-450
• “The virtual center for supernetworks”,

(http://supernet.som.umass.edu/facts/braess.html)
• William Echlin, “The Test Team Paradox”, www.stickyminds.com, 2006
• Alberto Savoia, “The Developer Testing Paradox”, 2005
• B.W. Boehm, “Software Engineering Economics”, 1980
• IPL, “Why bother to unit test?”, 1997
• B. Pettichord, “Three paradoxes of Test Automation”, 2003
• J. Kohl, “Test-Driven Development from a Conventional Software Testing

Perspective, Part 2”, 2006
• L. Becker, “90% of all usablity testing is useless”, 2004

A SPECIAL REPORT
© Computer Task Group, Inc. 2007 All rights reserved.

18

• B. Marick, Exploration through example, Test planning documents
(http://www.exampler.com/blog/2007/07/19/test-planning-documents/)

• John Crinnion: Evolutionary Systems Development, a practical guide to the
use of prototyping within a structured systems methodology. Plenum Press,
New York, 1991. Page 18.

• Wikipedia on prototyping (http://www.wikipedia.org)

Notes
1. Lee Thomas, “Quality versus speed: Paradox lost?”, IBM developerworks,

2003
2. Source:Paradox, Wikipedia
3. Raymond Smullyan, “What’s the name of this book”, 1978
4. Ingo Melzer, “Testing of a Computer Program on the Example of a

Medical Application with Diversification and Other Methods” 1996
5. Yang, M.C.K.; Chao, A. “Reliability-estimation and stopping-rules for soft-

ware testing, based on repeated appearances of bugs”; IEEE Transactions
on Reliability, vol.44, no.2, p. 315-21, 1995

6. Michael Hunter, Five questions with Sara Ford”, Thoughts from a Braidy
Tester, 2007

7. Hans Schaefer, “What a tester should know, even after midnight”, 2006
8. Mike Kelly, “Four Classic Problems with Scripted Testing”, 2006
9. Joel Spolsky, “What is the work of dogs in this country?”,

JoelOnSoftware.com, 2001
10. Matthew Heusser, “Classic mistakes in testing: revisited”, 2005
11. Ron Patton, Testing Axioms, 2000
12. The Complexity Barrier, (Beizer, 1990): Software complexity (and

therefore that of bugs) grows to the limit of our ability to manage that
complexity

13. Scientist Live, Failure breeds success, 2007 (University of Exeter)
14. James Bach’s blog, “How to investigate intermittent problems”, 2005
15. Hans Schaefer, “What a tester should know, even after midnight”, 2006
16. Boris Beizer, Software Testing Techniques, Second Edition, 1990
17. James Bach, “Test Automation Snake Oil”, Windows Tech Journal, October

1996
18. Nihit Kaul, weblog, 2004
19. James McCaffrey, “Software Testing paradoxes”, December 2005
20. B. Pettichord, “Three paradoxes of test automation”, 2003
21. B. W. Boehm, “Software Engineering Economics”, 1980
22. Alberto Savoia, “The Developer Testing Paradox”, 2005
23. IPL, “Why bother to unit test?”, 1997

Backed by over 40 years of
experience, CTG provides IT
staffing, application management
outsourcing, consulting, and
software development and
integration solutions to help
companies focus on their core
businesses and use IT as a
competitive advantage to excel
in their markets. CTG combines
in-depth understanding of our
clients’ businesses with a full
range of integrated services and
proprietary ISO 9001:2000-
certified service methodologies.
Our IT professionals, based in
an international network of offices
in North America and Europe,
have a proven track record of
delivering solutions that work.

More information about CTG is
available on the Web at
www.ctg.com.

For more information about
CTG’s Testing Services,
please contact:

In Europe:

CTG Belgium NV/SA
Global Testing Practice
Woluwelaan 140A bus 3,
1831 Diegem, Belgium
32 (0)2 720 51 70
Fax: + 32 (0)2 725 09 20
info.be@ctg.com.

In the U.S.:

CTG Inc.
Global Testing Practice
800 Delaware Ave.
Buffalo, NY 14209
716/882-8000
Fax: 716/887-7456
info.us@ctg.com

